Paxos 算法
Paxos 算法简介
Paxos 算法是 Leslie Lamport(莱斯利·兰伯特)在 1990 年提出的一种分布式系统共识算法。这也是第一个被证明完备的共识算法(前提是不存在拜占庭将军问题,也就是没有恶意节点)。
共识算法的作用是让分布式系统中的多个节点之间对某个提案(Proposal)达成一致的看法。提案的含义在分布式系统中十分宽泛,像哪一个节点是 Leader 节点、多个事件发生的顺序等等都可以是一个提案。
兰伯特当时提出的 Paxos 算法主要包含 2 个部分:
- Basic Paxos 算法:描述的是多节点之间如何就某个值(提案 Value)达成共识。
- Multi-Paxos 思想:描述的是执行多个 Basic Paxos 实例,就一系列值达成共识。
Raft 是 Multi-Paxos 的一个变种,其简化了 Multi-Paxos 的思想,变得更容易被理解以及工程实现。
针对没有恶意节点的情况,除了 Raft 算法之外,当前最常用的一些共识算法比如 ZAB 协议、Fast Paxos 算法都是基于 Paxos 算法改进的。
针对存在恶意节点的情况,一般使用的是工作量证明(POW,Proof-of-Work)、权益证明(PoS,Proof-of-Stake)等共识算法。这类共识算法最典型的应用就是区块链。区块链系统使用的共识算法需要解决的核心问题是拜占庭将军问题。
Basic Paxos 算法
Basic Paxos 中存在 3 个重要的角色:
- 提议者(Proposer):也可以叫做协调者(Coordinator),提议者负责接受客户端的请求并发起提案。提案信息通常包括提案编号(Proposal ID)和提议的值(Value)。
- 接受者(Acceptor):也可以叫做投票员(Voter),负责对提议者的提案进行投票,同时需要记住自己的投票历史。
- 学习者(Learner):如果有超过半数接受者就某个提议达成了共识,那么学习者就需要接受这个提议,并就该提议作出运算,然后将运算结果返回给客户端。

为了减少实现该算法所需的节点数,一个节点可以身兼多个角色。并且,一个提案被选定需要被半数以上的 Acceptor 接受。这样的话,Basic Paxos 算法还具备容错性,在少于一半的节点出现故障时,集群仍能正常工作。
Multi Paxos 思想
Basic Paxos 算法的仅能就单个值达成共识,为了能够对一系列的值达成共识,我们需要用到 Multi Paxos 思想。Multi-Paxos 只是一种思想,这种思想的核心就是通过多个 Basic Paxos 实例就一系列值达成共识。也就是说,Basic Paxos 是 Multi-Paxos 思想的核心,Multi-Paxos 就是多执行几次 Basic Paxos。
Raft 算法就是 Multi-Paxos 的一个变种,其简化了 Multi-Paxos 的思想,变得更容易被理解以及工程实现,实际项目中可以优先考虑 Raft 算法。